分子雲コア中心部に埋もれた[~]0.2Mo原始星に付随する [~]10AU円盤のALMA長基線観測

徳田一起(大阪府立大学/国立天文台)

ALMA Cycle 5 Obs. (P.I. Tokuda)

1.3 mm continuum

0."024 x 0."017 (~3.3 AU x 2.4 AU)

References

• Tokuda+14, ApJL, 789, L4, • Tokuda+16, ApJ, 826, 26,

•Tokuda+17, ApJ, 849, 101, •Tokuda+18, ApJ, 862, 8, •Tokuda+19 in prep.

分子雲コア中心部に埋もれた[~]0.2Mo原始星に付随する [~]10AU円盤のALMA長基線観測

徳田一起(大阪府立大学/国立天文台)

Collaborators:

大西利和 (大阪府大), 西合一矢, 河村晶子 (NAOJ), 井上剛志, 犬塚修一郎, 福井康雄, 立原研悟 (名古屋大), 松本倫明 (法政大), 町田正博 (九州大), 細川隆史 (京都大), 國友正信 (東京大), 富田賢吾 (大阪大)

Contents:

- Introduction ~What is MC27/L1521F?~
- ALMA Cycle 0,1 Obs. (Tokuda+14,16)
- ALMA Cycle 3 Obs. (Tokuda+17,18)
- Summary
- •ALMA Cycle 5 Obs. & Discussion

References

• Tokuda+14, ApJL, 789, L4, • Tokuda+16, ApJ, 826, 26,

•Tokuda+17, ApJ, 849, 101, •Tokuda+18, ApJ, 862, 8, •Tokuda+19 in prep.

Evolution of molecular clouds to protostars

Introduction ~Dense cores in Taurus~

Introduction what is MC27/L1521F?

I.R. observations with *Spitzer* space telescope

Introduction

- Vellos (Very Low Luminosity Objects) とは?
- Low luminosity object in "starless" cores (Young+2004)
- Def: Internal luminosity < 0.1 Lsun (Di Francesco+ 2007)
- VeLLOとは何者か?
- 非常に若い原始星
 Proto-brown dwarf
 *実際はこれらの複合も考えられる
- 3. ある程度成長した原始星 (光度が低いため)

星/褐色矮星形成の初期段階を探る上で重要な天体の一つ

最近の理論研究では...

ほとんどのVeLLOはClass I phase (Vorobyov+16) (降着時に持ち込むエントロピーが小さい場合)

Interim summary of MC27/L1521F

Before ALMA obs. v.s. After ALMA obs.

	Single-dish Obs.	ALMA Obs.
Shape	(Nearly) spherical	Complex structures
Central Density	~10 ⁶ cm⁻³	10 ⁶ -10 ⁷ cm ⁻³ (MMS2,3)
Single or Multiple?	Single (VeLLO)	(Possible) Multiple
Outflow evidence	Scattered light	Compact molecular outflow?
Protostellar mass	<0.1 <i>M</i> o ?	~0.2 <i>M</i> o
Accretion rate	10 ⁻⁵ –10 ⁻⁶ <i>M</i> o/yr?	<10 ⁻⁸ <i>M</i> o/yr
Disk size	Large (>100AU) ?	<i>R</i> ~10 AU
Temperature	~10 K	Warm CO gas, 15-60 K

Is it a typical protostellar core in an early stage of star formation?

Protostar and condensations at the center of the core

Arc-like structure

2000AUスケールのアーク構造(原始星+周囲の相互作用か?)

Interim summary of MC27/L1521F

Before ALMA obs. v.s. After ALMA obs.

	Single-dish Obs.	ALMA Obs.
Shape	(Nearly) spherical	Complex structures
Central Density	~10 ⁶ cm ⁻³	10 ⁶ -10 ⁷ cm⁻³ (MMS2,3)
Single or Multiple?	Single (VeLLO)	(Possible) Multiple
Outflow evidence	Scattered light	Compact molecular outflow?
Protostellar mass	<0.1 <i>M</i> o ?	~0.2 <i>M</i> o
Accretion rate	10 ⁻⁵ –10 ⁻⁶ <i>M</i> o/yr?	<10 ⁻⁸ <i>M</i> o/yr
Disk size	Large (>100AU) ?	<i>R</i> ~10 AU
Temperature	~10 K	Warm CO gas, 15-60 K

A highly dynamical protostellar core?

ALMA Cycle 3 Observations

Table: Specifications

Period	ALMA Cycle 3
Target	MC27(=L1521F)
Beam size	0."18 x 0."1 (25 x 14 AU)
Velocity resolution	0.85 km/s
Lines	CO(3-2), H ¹³ CO ⁺ (4-3), C ¹⁷ O(3-2), 0.87 mm continuum

*ALMA 12m array alone (7m, TP observations in Cycle 1)

Main Results

- 1. *R* ~10 AU disk around ~0.2 *M*_o protostar (Tokuda+17)
- 2. Warm CO gas generated by possible turbulent shocks (Tokuda+18)
 - warm (15–50 K) gas, very thin filaments, and compact clumps

A possible Keplerien disk around the VeLLO ?

Constrained physical properties form simulated observations ¹²CO and 0.87mm

M*	M_{disk}	R _{disk}
$0.18 \pm 0.05 M_{\odot}$	$\sim 10^{-4}{M}_{\odot}$	~10 AU

最終的な星の質量が決まりつつある段階?

観測的特徴	得られる示唆
・Low-luminosity (<0.07 Lo) ・あったとしても小規模なoutflow	現在のAccretion rate は極小 (<2e-8 Mo/yr)
・Spitzer で見られる散乱光	・過去の大規模なaccretion の名残
・柱密度のプロファイル (折れ曲りの位置 3000 AU)	•降着率2e-6 Mo/yr で 7e4 yr 成長すると ~0.1 <i>M</i> o の星となる
 高密度ガストレーサーが未検出 ~10 AUのdisk半径 	円盤が高密度環境から孤立しており、 円盤を通したaccretion は続かない?

分子雲コア中心の高密度環境から 孤立した円盤のイメージ

最終的な星の質量が決まりつつある段階?

観測的特徴	得られる示唆
・Low-luminosity (<0.07 Lo) ^{*1} ・あったとしても小規模なoutflow	現在のAccretion rate は極小 (<2e-8 Mo/yr)
•Spitzer で見られる散乱光	・過去の大規模なaccretion の名残
・柱密度のプロファイル (折れ曲りの位置 3000 AU)	•降着率2e-6 Mo/yr で 7e4 yr 成長すると ~0.1 <i>M</i> o の星となる
 高密度ガストレーサーが未検出 ~10 AUのdisk半径 	円盤が高密度環境から孤立しており、 円盤を通したaccretion は続かない?

*1

Cold accretion* (エントロピーを持ち込まない降着) でないと説明できない(初期半径~0.65 Ro)

> * References: e.g., Hartmann+97, Hosokawa+11, Baraffe+12, Vorobyov+17, Kunitomo+17

> > 分子雲コア中心の高密度環境から 孤立した円盤のイメージ

最終的な星の質量が決まりつつある段階?

観測的特徴	得られる示唆
・Low-luminosity (<0.07 Lo) ・あったとしても小規模なoutflow	現在のAccretion rate は極小 (<2e-8 Mo/yr)
・Spitzer で見られる散乱光	・過去の大規模なaccretion の名残
・柱密度のプロファイル (折れ曲りの位置 3000 AU)	•降着率2e-6 Mo/yr で 7e4 yr 成長すると ~0.1 <i>M</i> o の星となる
 高密度ガストレーサーが未検出 ~10 AUのdisk半径 	円盤が高密度環境から孤立しており、 円盤を通したaccretion は続かない?

可能性

乱流状態にあるガスが円盤のエン ベロープを剥ぎ取ってしまったか?

孤立円盤と周囲の複雑なガスの分布

¹²CO (3–2) channel map (12m+7m+TP) 0 10 30 60 (K)

- Many filamentary/clumpy structures
- Warm CO gas (~60 K) around 4-5 km/s velocity range
 => Heating form the protostar? => Unlikely

Thin filaments in MC27 with the width scale of a few tens AU

Several very thin filamentary gas => shocked layers ?

Tiny CO clumps

Discussion Warm gas and filamentary gas delineate interface layer of two velocity components

Warm CO filamentary gas generated by possible turbulent shocks

Summary of MC27/L1521F

Before ALMA obs. v.s. After ALMA obs.

	Single-dish Obs.	ALMA Obs.
Shape	(Nearly) spherical	Complex structures
Central Density	~10 ⁶ cm ⁻³	10 ⁶ -10 ⁷ cm ⁻³ (MMS2,3)
Single or Multiple?	Single (VeLLO)	(Possible) Multiple
Outflow evidence	Scattered light	Compact molecular outflow?
Protostellar mass	<0.1 <i>M</i> o ?	~0.2 <i>M</i> o
Accretion rate	10 ⁻⁵ –10 ⁻⁶ <i>M</i> o/yr?	<10 ⁻⁸ <i>M</i> o/yr
Disk size	Large (>100AU) ?	<i>R</i> ~10 AU
Temperature	~10 K	Warm CO gas, 15-60 K

Possible origin: Dynamical (turbulent) motion in this system?

MC27のここまでのまとめ

ALMA View of A Dense Core, MC27/L1521F, with ~20 AU Resolution

教科書的な原始星コア

+ Warm CO gas + tiny clumps

その他原始星コアのALMA観測の現状 1. 定性的には教科書的な描像の天体も存在(L1527, B335など) 2. MC27のように複雑な分布を持った原始星コアも少なからずありそう

3. VeLLO の正体について=>実はsub-solar massまで育った原始星? (see also Lee et al. 2018, ただし、著者らは信じていなさそう)

ALMA Cycle 5 Observations

Table: Specifications

Period	ALMA Cycle 5 (P.I., Tokuda, Grade A)
Target	MC27(=L1521F)
Beam size	<mark>0."038 x 0".024</mark> (5 x 3 AU) =>ALMAの現状の限界
Velocity resolution	~1 km/s
Lines	1.3 mm continuum, CO(2-1), ¹³ CO(2-1), C ¹⁸ O(2-1)

結果

1.1mm 連続波でdiskを空間分解し、クランプ状構造を発見
 ¹²COの速度構造(はあまり良い追加情報なし…)

Discussion

Any comments are welcome!!

・MC27の特徴まとめ

- 多重星形成の兆候, アーク構造
- 中心集中した密度プロファイル
- コンパクトdisk <10 AU
- 質量~0.2 Moの中心星 (降着活動の終焉を見ているか?)
- 暖かい(15-60 K) COガス: 乱流による衝撃波加熱? 動的な星形成現場
- ・その中心で見えた非対称なdisk 構造の起源/特徴について - 周囲の小質量クランプが降り積もっている?

=>例えば、Cycle 7でどのような観測を行えば良いか? - 分解能はもうこれ以上稼げない

- もう一回同じ設定で観測もあり?
- 例えば、[CI]などはこの天体で役に立ちそうかどうか?