ALMA resolves CI emission from the β Pic debris disk \ldots and new CI data from HD 32297

Gianni Cataldi

Subaru telescope, NAOJ JSPS postdoctoral fellow

Outline

1 Short introduction: gaseous debris disks

2 The β Pic debris disk: new insights from ALMA CI data

3 New CI data from HD 32297

A = A = A = E

Gaseous debris disks

- debris disk are generally gas-poor
- some debris disks contain detectable amounts of gas
- currently ${\sim}20$ examples
- $\bullet\,$ mostly around young (${\sim}10s$ of Myr) A-stars
- primordial or secondary origin?

Primordial scenario

- leftover from protoplanetary phase
- prime example: HD 21997 (30 Myr; large CO mass; gas and dust *not* co-spatial)
- implications for primoridal disk lifetime—some disks can retain gas longer than previously anticipated
 - inefficient gas loss?
- Iate stage gas accretion by planets?
- influence on dust dynamics?

CO emission from 30 Myr old HD 21997 (Kóspál et al. 2013)

A B M A B M

Secondary scenario

- gas lifetime shorter than age of the system (CO photodissociation)
- gas produced from collisions or outgassing of solid bodies
- ... CO formation? (talk by Kazunari Iwasaki)
- secondary gas allows constraints on parent body composition
- so far, composition consistent with solar system comets

β Pictoris: basic data

- young $(23 \pm 3 \,\text{Myr})$ main-sequence A-star
- $\bullet\,$ edge-on debris disk with planetesimal belt at ${\sim}100\,\text{AU}$ and gas
- gas secondary since CO quickly (within \sim 50 yr) photodissociated \Rightarrow must be replenished continuously (colliding comets)

• • = • • = •

ALMA resolves CO

- clump: location of enhanced collision rate and thus CO production
- unseen, outward-migrating giant planet trapping cometary bodies in resonance (Wyatt 2003, 2006)

Dent et al. (2014)

∃ >

C vs CO in planet migration scenario

- $\bullet\,$ clump orbits with planet $\Rightarrow\,$ time-integrated gas production is symmetric
- \bullet CO lifetime short (tracer of instant collision rate) \Rightarrow traces the clump
- \bullet ... but C traces long term evolution \Rightarrow should be symmetric

New ALMA band 8 data: CI

low S/N due to antenna configuration and weather

- B - - B

horizontal emission profile

additional information extracted from the data

- estimate total C mass: ${\sim}10^{-3}\,{
 m M}_\oplus$ (${\sim}{
 m Pluto}$ mass)
- estimate time since C production started:
 - C produced only from CO photodissociation
 - C not removed from the system (no accretion disk)
- \bullet gas production started ${\sim}10^4$ years ago—very recent!
- gas-producing events must happen relatively frequently

Consequences

- planet scenario excluded
- ${\ensuremath{\, \bullet }}$ need some mechanism to explain simultaneous CO and C asymmetry
- eccentric disk?

Tidal disruption

- tidal disruption most suitable mechanism to get eccentric disk
 - giant collision: too infrequent
- tidal disruption of Moon/Mars-sized body by Neptune?
- preliminary modeling promising
- might be applicable to other disks with asymmetries

Comet Shoemaker-Levy 9 tidally disrupted by Jupiter.

Image credit: NASA, ESA, and H. Weaver and E. Smith (STScI)

(日) (周) (日) (日) (日) (日)

Tidal disruption: difficulties

- more frequent than giant collisions, but still too infrequent compared to 10⁴ years gas disk age
- radial width of the clump (radiation pressure on CO-rich grains?)
- \bullet number density of parent bodies realistic? (requires $\gtrsim\!\!1000$ Moons floating in the disk)
- more detailed modeling necessary (Cataldi & Wu, in prep.)

Tidal disruption modeling

- N-body simulation of tidal disruption
- calculate collision rates in every location of the disk
- infer dust luminosity evolution (typical lifetime of the event)
- compute expected gas density profile and compare to data

N-body simulation of tidal disruption event (Cataldi & Wu, in prep.)

HD 32297

- HD 32297: A-star, <30 Myr old
- CII detected by Herschel (Donaldson+13), CO resolved by ALMA (MacGregor+18)
- might have ${\sim}1000{\times}$ more CO than ${\beta}$ Pic

Debes et al. (2009)

new ALMA CI data

- 18 min on source
- high S/N (compared to β Pic)
- combine with CII data from Herschel to estimate total C mass
- compare C and CO spatial distribution
- compare C/CO ratio to other gaseous debris disks

HD 32297: pv diagram

- clearly a ring
- no significant asymmetry apparent

Summary

- $\bullet\,$ C I around $\beta\,$ Pic shows the same clumpy asymmetry as CO
- consequence: clump is not due to a planet
- $\bullet~C$ gas production started only ${\sim}10^4$ years ago
- we propose that the disk is eccentric
- tidal disruption event? more modeling underway!
- new, high S/N CI map from HD 32297 currently being analyzed

pv-diagram

三日 のへの

A B M A B M

- (日)