### 土星リングの中間赤外線撮像

#### 藤原英明 国立天文台ハワイ観測所

共同研究者:森島龍司 (UCLA/JPL)、 藤吉拓哉、山下卓也 (国立天文台)

### HD 142527 の中間赤外線撮像





#### (Fujiwara+ 2006, ApJL)

### 「あかり」中間赤外線全天サーベイ

AKARI: a Japanese IR satellite (surveyor)

- All-sky survey with higher sensitivity and spatial resolution than IRAS
- MIR IRC survey (9 and 18µm) is useful for warm debris disk search



Warm Debris Disk Survey with AKARI MIR Data

- Method
  - Cross-correlating between AKARI, 2MASS, and Tycho-2 SpT catalog
  - Extract MS stars with large 18  $\mu$ m excess

BG: AKARI IRC MIR All-Sky Survey (Ishihara+ 2011, A&A)

### あかりで検出した温かいデブリ円盤

• 856の恒星のうち 24 天体で 18um 超過を検出



#### Debris Temperature & Radius

- 赤外線超過からダストの温度・中心星からの距離を推定
  - 黒体放射を仮定して



- A型星とFGK型星とで温度 が異なる傾向
  - A型星: T<sub>dust</sub> < 200K
    - Wien-side tail of relatively cool debris dust of large disk
  - FGK型星: T<sub>dust</sub> = 300-500K
    - Inner warm dust
  - 早期型 -> 高光度 -> 輻射圧
    が効いて中心星近傍に (小さな) ダストが存在できない

#### HD 15407A の中間赤外線スペクトル

(Fujiwara+ 2012a)

- Spitzer/IRSスペクトルをモデル化
  - ダスト温度、組成、光度を導出
- $T_{dust}$ =500-600K  $\rightarrow$   $R_{dust}$ =0.6-1.0AU
- 非晶質シリケイト + <u>シリカ (SiO<sub>2</sub>)</u> + 連 続(黒体)成分
  - 極めてレアな「シリカ」の検出 (9 & 21µm フィーチャー)
  - 大きな母天体同士の高速衝突?
    (HD 172555; Lisse+ 2010)
- ダスト比光度 L<sub>dust</sub>/L<sub>star</sub> ~ 0.005
  - 5本の指に入るほど"dusty"な円盤
  - 一 微惑星帯の定常衝突モデル
    (Wyatt+ 2007) では説明できない
  - Transient なダスト生成イベント



#### HD 15407A の赤外線 SED

(Fujiwara+ 2012a, 2012b)



- Herschel/PACS (PI: Zuckerman) 70, 100, 160 um
- AKARI/FIS (DT) <del>65</del>, 90, <del>140</del>, <del>160</del> um

<sup>=</sup>lux Density (Jy)

7

### 土星リングの中間赤外線撮像

Fujiwara et al. 2017, A&A, 599, A29 Seasonal variation of radial brightness contrast of Saturn's rings viewed in mid-infrared by COMICS

#### 藤原英明

国立天文台ハワイ観測所

共同研究者:森島龍司 (UCLA/JPL)、 藤吉拓哉、山下卓也 (国立天文台)

### 惑星リング: デブリ円盤のミニチュア?

- 固体粒子による円盤状構造
- gas-free gas-less な系
- 天体破壊によって生成された可能性





0

Aリング (τ~0.5)

Cリング (τ~0.1) カッシーニ の隙間 (τ~0.1)

Bリング (τ~1—5)

• 氷粒子の集合体

 可視光 (反射光) では B, A リングが明るく、Cリング・ カッシーニの隙間がとても暗い

• 中間赤外線 (熱放射) でどのように見えるのか?

(c) NASA

(広報用画像としても魅力: ウラの動機)

### データ・解析

- 2008/1/23 (UT)
- すばる望遠鏡 中間赤外線カメラ COMICS
- 8.8, 9.7, 10.5, 11.7, 12.5, 17.7, 18.8, 20.5, 24.5 μm での多波長観測
- 別チーム (S07B-076, Yanamandra-Fisher)
  のデータ (未出版!)を <u>SMOKA</u> から取 得・解析
- エッジオンに近い状態での観測

| Epoch            | r    | Δ    | <i>B</i> ′ | В      | α     |
|------------------|------|------|------------|--------|-------|
| (UT)             | (au) | (au) | (deg)      | (deg)  | (deg) |
| January 23, 2008 | 9.27 | 8.45 | -8.7       | -7.2   | 3.5   |
|                  | 日心距离 | 准    | 太陽高度       | F<br>2 | 位相角   |
|                  | t    | 也心距离 | リンク面<br>雑  | 地球高度   | F.    |





# 結果: 輝度分布 <sup>空間分解能: 0.38-0.67" = 数 1000 km</sup>

| Cassin<br>Divisio  |         | 11 m    |         |         |
|--------------------|---------|---------|---------|---------|
| ni<br>on<br>B ring | Cring   |         |         |         |
| 18.8 µm            | 18.8 µm | 11.7 μm | 8.8 µm  | 8 8 um  |
|                    |         |         |         |         |
|                    | 20.5 um | 12.5 μm | 9.7 μm  | 9.7 um  |
|                    |         |         |         |         |
| 24.5 µm            | 24.5 µm | 17.7 μm | 10.5 μm | 10 5 um |



### 結果:可視光との比較



- 同年に石垣島天文台で撮影された可視光画像
  (時期・リング開き角度・位相角は少し異なる)
- リングの<u>輝度コントラストが可視光と中間赤外線とで反対</u>
- 可視光では常に暗い <u>Cリング および カッシーニの隙間 が中</u> 間赤外線では明るい



## 結果: 各リングの温度

- 単一温度黒体放射 (光学的厚み τ 仮定) →粒子の物理温度
- 輝度 Ι<sub>ν</sub> (λ) = β Β<sub>ν</sub>(λ, T); 充填率 β = 1 exp (-τ/|sin B|)

| Region | Ring                    | T by COMICS (K) |     |     |     |    |    |  |
|--------|-------------------------|-----------------|-----|-----|-----|----|----|--|
|        |                         | $\tau = 0.05$   | 0.1 | 0.2 | 0.5 | 1  | 2  |  |
| 0      | A ring (East)           | _               | -   | 80  | 78  | 78 | _  |  |
| 1      | Cassini Division (East) | 97              | 91  | 87  | _   | _  | _  |  |
| 2      | B ring (East)           | _               | _   | _   | 82  | 82 | 82 |  |
| 3      | C ring (East)           | 102             | 97  | 92  | _   | _  | _  |  |
| 4      | C ring (West)           | 105             | 100 | 95  | _   | _  | _  |  |
| 5      | B ring (West)           | _               | _   | _   | 84  | 84 | 84 |  |
| 6      | Cassini Division (West) | 99              | 93  | 89  | _   | _  | _  |  |
| 7      | A ring (West)           | _               | -   | 82  | 80  | 80 | _  |  |



東側

- B, A リングに比べて <u>Cリング・カッシーニの隙間 が高温</u>西側
- ・ いずれのリングでも 東側 (朝) に比べて 西側 (夕方) が高温 (輝度も高い)



- 中間赤外線 (熱放射) での輝度 Ι<sub>ν</sub> (λ) = β Β<sub>ν</sub>(λ,Τ)
- (2008年の観測条件で) Cリング・カッシーニの隙間 が明るいのは、高温の効果が低い粒子充填率を上回るため



どのリングでも一律に西側 (夕側) が高温なのは、土星本体の影から脱したのちに、太陽光によって温められるから

#### なぜCリング・隙間はより高温?

- ・ 光学的に薄い
  - 粒子同士の相互影効果が小さく、太陽光で効率的に加熱 されやすい?
  - 微小隕石などによる汚染が効き、アルベドが低くなるために、太陽光で効率的に加熱されやすい?
- リング粒子のサイズが小さい?

#### 中間赤外線輝度の変動 (2005-2008年)

 リング開き角が大きい2005年4月 のデータ (S05A-029) も解析・比較

| Epoch            | r    | Δ    | <i>B</i> ′ | В        | $\alpha$ |
|------------------|------|------|------------|----------|----------|
| (ŪT)             | (au) | (au) | (deg)      | (deg)    | (deg)    |
| January 23, 2008 | 9.27 | 8.45 | -8.7       | -7.2     | 3.5      |
| April 30, 2005   | 9.07 | 9.33 | -21.9      | -23.6    | 6.1      |
|                  |      |      |            |          |          |
|                  |      |      | ート・バー      | リー シナナ て |          |

リンク面に対する 太陽高度 地球高度

- <u>2005-2008年でコントラストが反転</u>
- 粒子温度・充填率は太陽・地球に 対するリング開き角に依存
- リング開き角が大きいと充填率コントラストが大
- 結果としてCリング・カッシーニの隙間では輝度 I<sub>v</sub> (λ) = β B<sub>v</sub>(λ,T) が小



(より定量的な議論・探査機データ との比較は論文で) <sup>19</sup>

#### 中間赤外線輝度の変動 (2005-2008年)



#### 中間赤外線輝度の変動 (2005-2008年)

 リング開き角が大きい2005年4月 のデータ (S05A-029) も解析・比較

| Epoch            | r    | Δ    | <i>B</i> ′ | В     | $\alpha$ |  |
|------------------|------|------|------------|-------|----------|--|
| (ŪT)             | (au) | (au) | (deg)      | (deg) | (deg)    |  |
| January 23, 2008 | 9.27 | 8.45 | -8.7       | -7.2  | 3.5      |  |
| April 30, 2005   | 9.07 | 9.33 | -21.9      | -23.6 | 6.1      |  |
|                  |      |      |            |       |          |  |
|                  |      |      | い、バートサナス   |       |          |  |

リンク面に対する 太陽高度 地球高度

- <u>2005-2008年でコントラストが反転</u>
- 粒子温度・充填率は太陽・地球に 対するリング開き角に依存
- リング開き角が大きいと充填率コントラストが大
- 結果としてCリング・カッシーニの隙間では輝度 I<sub>v</sub> (λ) = β B<sub>v</sub>(λ,T) が小



(より定量的な議論・探査機データ との比較は論文で) <sup>21</sup>

まとめ

- デブリ円盤の「ミニチュア」として惑星リングに着目
- アーカイブデータを活用した土星の中間赤外線画像
- ・ リング輝度・温度の測定(地上観測では最高空間分解能)
- 2008年では可視光輝度コントラストと反対 (Cリング・カッシー 二の隙間 が B, A リング に比べて高温かつ明るい)
  - 高温の効果が低充填率 (光学的厚み)を上回る
- ただし2005年→2008年でコントラストが反転
  - 充填率は太陽・地球に対するリング開き角に依存
- リングも朝は寒い