

What are debris disks?

- Dusty disks around main-sequence stars
 - descendant of protoplanetary disks
- SED typically shows excess emission in infrared wavelengths.
- High-resolution imaging is now available

PPDs and debris disks

Protoplanetary disks

- Young (< 1-10 Myr) \rightarrow Host star: PMS
- Optically thick
- Gas rich
- Primordial dust

Debris disks

- Old (> 1-10 Myr)
 - \rightarrow Host star: MS
- Optically thin
- Dust rich (& gas)
- Secondly dust

Solar System and Debris disks

- The solar system contains debris disk components:
 - Asteroid belt (e.g., zodiacal light)
 - Kuiper belt
- Debris disk structure indicates planetary architecture!

Although asteroid belt and Kuiper belt are much fainter than those seen in debris disks…

What can we learn from debris dust?

Properties of Parent bodies

- dust composition
- dust shape, structure, and porosity
- Fragmentation process
 - grain size distribution
 - minimum/maximum grain radius
- <u>System dependences</u>
 - stellar type? age?
 - How does it differ from our Solar System?

•

How can we know their properties?

- Thermal emission (MIR mm) & Scattered light (Opt NIR)
- Optically thin for all wavelengths!
 → Much more simple than protoplanetary disks
- Combined analysis of scattering and thermal is a powerful tool.

Fomalhaut, Hughes et al. (2018)

6

Dust characterization

§2.1 Dust Composition§2.2 Grain size distribution§2.3 Dust shape & structure

Dust characterization

§2.1 Dust Composition

§2.2 Grain size distribution §2.3 Dust shape & structure

Dust composition

- Direct evidence of composition: solid-state feature
 silicate features: λ =10 μm, 20 μm, 69 μm
- 10 and/or 20 μ m silicate emission from debris disks
 - 120 targets/571 sources $\approx 20\%$ (Chen+14, Mittal+15)
 - biased for warm and small grains (<~10 $\mu m/2\,\pi$ ~1.6 $\mu m)$
- 69 μ m feature can be seen in more lower temp.

ALMAワークショップ: 円盤から太陽系へ

Crystallinity of silicate

Lab.Sil.

amorphou

olivine 0.1μ

- Interstellar silicate: >99% amorphous (Kemper+04)
- Crystallinity of silicate in debris disk (Mittal+15)
 - show a wide variety : <1 95%

10

- no clear correlation with stellar age

Other material signature?

- High SNR Spectral decomposition @ MIR
 - Sulfide, amorphous carbon, water (Lisse+12)
 - Still fitting is <u>model dependent</u> (Lebreton+16)
- **Reddish NIR Scattered light** •

11

- Reddish colors due to organics (Debes+2008)
- Solution is not unique because colors can be affected by grain size & structure (Koehler+08)

Reddish

浜松町, 2018.11.21

Dust characterization

§2.1 Dust Composition§2.2 Grain size distribution§2.3 Dust shape & structure

Grain size distribution in debris disk

Grain size distribution power-law index q

• mm-wave flux (thermal) from debris dust (optically thin)

$$F_{\nu} = \kappa_{\nu} B_{\nu}(T_d) M_{\text{dust}} d^{-2} \propto \nu^{\beta+2} \propto \nu^{\alpha_{\text{mm}}}$$

Dust opacity: $\kappa_{\nu} \propto \nu^{\beta}$

Observed flux slope α_{mm} depends on dust property β !

Grain size distribution power-law index q

• mm-wave flux (thermal) from debris dust (optically thin)

$$F_{\nu} = \kappa_{\nu} B_{\nu}(T_d) M_{\text{dust}} d^{-2} \propto \nu^{\beta+2} \propto \nu^{\alpha_{\text{mm}}}$$

Dust opacity: $\kappa_{\nu} \propto \nu^{\beta}$

Observed flux slope α_{mm} depends on dust property β !

• Approximate relation exists (a_{max} >> λ) (Draine 2006)

Opacity index in Rayleigh limit β_s

- ☑ 星間ダスト (a_{max}~0.1µm << mm波)
 - 分子ガスが卓越するline of sightでβ=1.66

(Planck Collaboration Int. XIV, 2014, A&A, 564, A45)

- \square $\beta_s := \beta$ in Rayleigh limit (x<<1)
 - (a) <u>結晶質の絶縁体</u>(結晶質silicate/H₂O iceなど)

赤外線の格子振動のdamping wingによる吸収 (Lorentz model)

(b) 導体/半導体 (graphiteなど)

R. Tazaki

自由電子によるエネルギー散逸 (Drude model)

(c) <u>非晶質の絶縁体 (</u>非晶質silicate/H₂O iceなど)

モデル化は発展途上,主に室内実験で調べられている (e.g., Demyk+17)

・温度依存性がある

 $\beta_s = 2$

Opacity index in Rayleigh limit β_s

- ☑ 星間ダスト (a_{max}~0.1µm << mm波)
 - 分子ガスが卓越するline of sightでβ=1.66

(Planck Collaboration Int. XIV, 2014, A&A, 564, A45)

- $\square \ \beta_s := \beta \text{ in Rayleigh limit (x << 1)}$
 - (a) <u>結晶質の絶縁体 (</u>結晶質silicate/H₂O iceなど)

赤外線の格子振動のdamping wingによる吸収 (Lorentz model)

(b) <u>導体/半導体</u> (graphiteなど)

R. Tazaki

17

自由電子によるエネルギー散逸 (Drude model)

(c) 非晶質の絶縁体 (非晶質silicate/H₂O iceなど)

モデル化は発展途上,主に室内実験で調べられている (e.g., Demyk+17')

・<u>温度依存性</u>がある

Grain size distribution power-law index

 Inferred power-law index q approximately coincides with collisional cascade models, which predicts q ≈ 3 - 4. (q=3.5: Dohnanyi+69, Tanaka+96)

ALMAワークショップ: 円盤から太陽系へ

Grain size distribution in debris disk

Minimum size:

blown-out size by stellar radiation pressure

• Specific orbital energy of a particle (circular orbit)

$$\frac{v^2}{2} - (1 - \beta) \frac{GM}{r} \ge 0, \quad \beta = \frac{F_{\text{RP}}}{F_{\text{grav}}} \quad \square \qquad \beta \ge 0.5$$

unbound

- Ratio of radiation pressure and stellar gravity (both \propto r^2)

Small grains are blown out from the system

Example of the *β*-value

- <Qpr>> (and then β) drops in the Rayleigh domain
- β-value depends on optical constant and dust structure
 (e.g., Mukai et al. 1992)

R. Tazaki

ALMAワークショップ: 円盤から太陽系へ

Minimum size of dust: observations

- MIR silicate feature constrains minimum dust grains
- Derived minimum size: $\approx 0.3 \ \mu\text{m} 40 \ \mu\text{m}$ (Mittal+15)
- Positive correlation between a_{min} & stellar luminosity
- But dependence is shallower than that of blown-out size

Inconsistent with radiation pressure prediction!

Blown-out small grains: halo component

- Outer debris disk show blue colors (Debes+08)
 = "halo of small grains"
- Small grains (compared to λ) show blue colors (Rayleigh scatt.)

Dust characterization

§2.1 Dust Composition§2.2 Grain size distribution§2.3 Dust shape & structure

Probing dust structure: linear polarization

Graham+2007 fluffy aggregate (df=1.9) $2\pi R/\lambda \sim 23$, P($\theta = 90^{\circ}$) ~ 80% 50% I Tazaki+2016 x (arcsec 10⁰ Phase function AU Mic HG Fit 0.8 10 $-S_{12}/S_{11}, S_{22}/S_{11}$ ζ 10^{-2} 0.6 10^{-3} ζ 10^{-1} 0.4 10^{-5} 1.0 ζ 0. 0. 1.0 μm 0.2 0.5 7 0.0 0 $\lambda = 1.0 \ \mu m$ <u>√</u> 1.6400.5 $\lambda = 1.6 \,\mu m$ (b) BPCA (N = 1024) • Porous Aggregrate (a) BCCA (N = 1024 $h = 2.6 \,\mu m$ $\lambda = 2.6 \text{ um}$ -0.2-1.080 100 120 140 160 180 20 40 0 60 Scattering angle θ [°] scattering angle [degrees] 150

High polarization fraction of AU Mic indicates the presence of fluffy aggregates

Scattering angle θ [°]

ALMAワークショップ: 円盤から太陽系へ

Phase function of debris dust

- Most disk show similar phase function
- Phase function becomes almost flat at side and back scattering.
 - Henyey-Greenstein function cannot reproduce this trend.

Hughes et al. (2018)

Phase function of debris dust R_q^{-1} R_0^{-1}

Foward scattering

- Most disk show similar phase function
- Phase function becomes almost flat at side and back scattering.
 - Henyey-Greenstein function cannot reproduce this trend.

Fluffy aggregates show flat phase function!

 $\log q$

Backward scattering

Exception: HR 4796A

Phase function with strong forward scattering AND continuous

ng are detected.

of 30 µm-sized grains

クショップ: 円盤から太陽系へ

- The bright side might be <u>the far side</u> of Fomalhaut (Le Bouquin+2009)
- <u>Suppose this is true</u>, large grains (>100 µm) can explain a continuous increase of phase function at side- and back-scattering region (Min+2010) (like lunar phase!).

Phase function of dust coma of comet 67P: Rosetta/OSIRIS observations

Large (>10 µm) elongated particles aligned their long axes perpendicular to the solar radiation can reproduce OSIRIS obs.

§3.millimeter-wave dust opacity

"Standard value" of mm-wave opacity

- Beckwith et al. (1990)
 - mm波における原始惑星系円盤のダスト連続光サーベイ観測論文
 - ダスト不透明度として以下の値を採用 ("業界標準値")

$$\kappa_{\nu} = 2 \operatorname{cm}^2 \operatorname{g}^{-1} \left(\frac{\lambda}{1.3 \operatorname{mm}} \right)^{-\beta}, \ \beta = 1$$

- 観測的には大きな矛盾はない(と思われる, e.g., SED, disk mass)
- なんらかの具体的なダスト・モデルに基づいた値ではない
- cf.) Beckwith+90のopacity値は星間ダストの値よりも約1桁大きい

$$\kappa_{\nu} = 0.21 \text{ cm}^2 \text{ g}^{-1} \left(\frac{\lambda}{1.3 \text{ mm}}\right)^{-\beta}, \ \beta = 1.68$$
 Li & Draine (2001)

Opacity: Amorphous silicate 0.5 MAC_{Exx}>

- Lab. measurement: $0.2 \text{ cm}^{2.5} \text{ g}^{-1} \leq \kappa_{ab_{\lambda}(\mu m)}^{0.5} 10 \text{ cm}^{2.5} \text{ g}^{-1} @ \lambda = 1 \text{ mm}^{1.5} \text{ mm}^{1.5}$
- Beckwith+90: $\kappa_{abs} = 2.6 \text{ cm}^2 \text{ g}^{-1} @ \lambda = 1 \text{ mm}$

B90 opacity: Within the range of Lab. measured opacity

Opacity: Carbonaceous material

- Lab. measurement: $\kappa_{abs} \approx 25 30 \text{ cm}^2 \text{ g}^{-1}$
- ≈ 10 times larger larger than Beckwith's opacity value
- Presumably due to connection effect (Tazaki & Tanaka 18', references therein).

ALMAワークショップ: 円盤から太陽系へ

Effect of aggregation: silicate feature

Tamanai, …, Tazaki et al. 2018, A&A, 619, A110

• Lorentz-model : dielectric function becomes large at $\lambda > \lambda_c$ • Connection (proximity) effect makes "shoulder" in the feature

9.2

9.4

8.4

9.6

R. Tazaki

Summary

- Dust grains in debris disks contain amo/cry silicate, although constraints on other species are still weak.
- Grain size distribution power-law index seems to be consistent with collisional cascade models ($q \approx 3-4$)
- Minimum grain size in debris disk is not determined only by stellar radiation pressure. Importance of gas??
- Scattering phase function looks similar for some debris disks, indicating that porous structure of debris dust might be common.
- Beckwith+90's millimeter-wave opacity ("standard value") seems to be comparable to the opacity of amorphous silicate, but roughly 10 times smaller for carbonaceous composition.