原始惑星系円盤の光蒸発

仲谷崚平

東京大学理学系研究科物理学専攻 博士後期課程3年(吉田研究室)

Nakatani et al (2018a, ApJ, 857, 57) Nakatani et al (2018b, ApJ, 865, 75)

ALMA Workshop @ WTC Conference Center Tokyo, 11/21/2018

Outline

1. 円盤寿命と光蒸発の関連についてざっくりレビュー

 最近の光蒸発研究(Nakatani+18a,bなど。今後の展望 を織り交ぜながら。)

Introduction: Stellar-system Formation

Protoplanetary Disk (PPD)

- Geometrically thin Keplerian disk around a young star
- Main components: Gas/Dust
- Birthplace of planets

Lifetimes of Protoplanetary Disks

Disk Fractions with Other Tracers

Ha, NIR: disk medium at ~0.1 au MIR: dust disk at ~1au FIR: dust disk at ~10au **OI 63µm**: gas disk at ~10-100au e-folding times: • 2-3Myr (Gas, NIR, MIR) **4-6Myr** (FIR) Gas signature is not significant in10-20 Myr-old disks (e.g., Dent+13)

Bulk mass of both **Gas** and Dust disks disperse within ~ 10 Myr

Ercolano & Clarke (2017)

Transitional Disks —— Objects caught in the act of dispersal —

- < 10 % of PPDs: NIR and/or MIR deficit + MIR and FIR excess (e.g., Strom+89, Furlan+09) → Transitional Disks
- Disks clear in an **inside-out** manner.
- The transition time is $\sim 10^5 \text{ yr}$

Formation timescale
 Lifetime
 Transitional timescale

Disk dispersal is **very rapid** at the last stage.

Metallicity Dependence of Lifetimes

Significances of Dispersal Time

Observational suggestions

- Gas, dust disk dispersal < 10Myr
- 10⁵ yr transition timescale
- Short lifetimes in low-Z environments

Significances

- Limiting gas giant planet formation timescale
- Constraining *initial configuration* of planetary systems and debris disks
- Suggesting conditions for planet-formable environments
- Applying to disk evolution/planet formation in general metallicity environment

Dispersal Mechanisms stripping from the surface

There are two ways disk loses its own mass.

Falling onto the star

- Accretion (e.g. Shakura & Sunyaev 1973, Lynden-Bell & Pringle 1974) Angular momentum transfer due to viscous friction \rightarrow Materials fall
- MHD winds (e.g. Suzuki & \bullet Inutsuka 2009, Bai & Stone 2013) Magneto-hydrodynamical effects (MRI, magnetocentrifugal force) \rightarrow Winds, driving accretion
- Photoevaporation

(e.g. Hollenbach et al. 1994, Gorti & Hollenbach 2009) Irradiation \rightarrow Thermally driven winds

They are developing areas of the research

Photoevaporation

e.g., Bally & Scoville (1982); Shu et al. (1993), Hollenbach et al. (1994)

Typical mass loss rate (photoevaporation rate): $10^{-10}-10^{-8}\,{
m M}_{\odot}\,{
m yr}^{-1}$

Observational Signatures: Blue-shifted lines

(e.g., Pascucci et al. (2011), Siman et al. (2016), Ercolano & Clarke (2017)

- [OI] and [NeII] lines are considered to trace photoevaporative winds (and/or MHD winds).
- Slow (< 30 km/s) and narrow (FWHM < 40 km/s) blue-shifts of Nell emission are consistent with photoevaporation models (Alexander, 2008b; Ercolano and Owen, 2010)

Mass-Loss Profiles

Viscous Evolution + Photoevaporation

Clarke+01, Alexander+06, Owen+10, Gorti+15

Viscous Evolution + Photoevaporation well explains the two timescales

How could photoevaporation be Z-dependent?

Blue solid lines: <u>Gas</u> Density contours (stratified structure)

- Disks look the same to EUV.
- The optically thick region is embedded
 in the <u>high gas density</u> region.

FUV can reach the deep interior with low-Z → yielding a higher massloss rate

Photoevaporation can be Z-dependent

EUV (>13.6 eV)

Thermalize

p

	FUV	EUV	X-rays	
Photon energy	$6 \text{ eV} \leq hv \leq 13.6 \text{ eV}$	$13.6 \text{ eV} \leq hv \leq 100 \text{ eV}$	$0.1 \text{ keV} \le hv \le 10 \text{ keV}$	
Main absorber	Dust	Atomic hydrogen	Metal elements (≧ 0.3 keV)	
Penetrability	High	Low	High	
Metallicity dependence	Dependent	Independent	Dependent	
FUV dust	dust Thermalize	X-ray primary el	ectron secondary electron	

- To obtain metallicity dependence of mass-loss rates
 - Giving implications to the observational lifetimes

Overview of the Calculation Methods

Comparison with (Selected) Previous Models

First self-consistent Rad.HD studies

	Hollenbach+ 94	Gorti+09	Owen+10	Ercolano +10	Wang+17 🖌	Nakatani +18a	Nakatani +18b
Hydrodynam ics	No	No	Yes	No	Yes	Yes	Yes
Radiative transfer	Yes	Yes	No	Yes	Yes	Yes	Yes
Thermal processes	Yes	Yes	No	Yes	Yes	Yes	Yes
(Detailed) Chemistry	No	Yes	No	Yes	Yes	Yes	Yes
FUV heating	No	Yes	No	No	Yes	Yes	Yes
EUV heating	Yes	Yes	No	Yes	Yes	Yes	Yes
X-ray heating	No	Yes	Yes	Yes	Yes	No	Yes
Dust IR transfer	No	Yes	No	No	No	Yes	Yes
Multi- metallicity	No	No	No	Yes	No	Yes	Yes

Color Scales

15.5

30

1.0

0.0

0.5

No neutral flow at very low metallicity

Problems in these studies:

- Almost all do not use a self-consistent calculation method.
- Wang & Goodman do, but X-ray is assumed to have a single energy (1keV)

X-rays strengthen the FUV heating

(Gorti & Hollenbach 2009)

X-ray Effects ($Z = 0.1 Z_{\odot}$ disks ; Nakatani+18b)

Is X-ray really an effective driver?

UV/X-ray Photoevaporation Rates

Estimated Dispersal Times

➤ Summary

- 1. Motivation: Observational metallicity dependence of lifetimes.
- 2. Methods: Hydrodynamical simulations with radiative transfer and non-equilibrium chemistry to examine the metallicity dependence of photoevaporation.
- 3. Results: Photoevaporation rates has a peak at $Z \sim 10^{-0.5}$ Z_{\odot} . If X-rays are taken into account, the peak moves to $Z \sim 10^{-1} Z_{\odot}$. X-rays strengthen the FUV heating.
- 4. Conclusion: Our model would be consistent with the observed metallicity dependence of the lifetimes, and it predicts that the disks would have even longer lifetimes in the much lower metallicity environments $Z \leq 10^{-2} Z_{\odot}$.

Future Prospects of the Field

- Luminosity dependence
- Central-star-mass dependence
- Dust dynamics
- Interplay with MHD
- Low-metallicity environments observations