

岩﨑一成(大阪大学)

共同研究者 小林浩(名古屋大学)

ALMAワークショップ:円盤から太陽系へ

CO in Debris Disks

CO was detected in many debris disks.

✓ Around A-type stars

49Cet (Zuckerman+ 1995), **HD 21997** (Moor+ 2011), **β Pic** (Dent+ 2014), **HD131835** (Moor+ 2015), **HD181327** (Marino+ 2016), **HD110058, HD 138813, HD 146897, HD 156623** (Lieman-Sifry+ 2016), **HD32297** (Greaves+ 2016), **Fomalhaut** (Matra+ 2017), **HD121191, HD121617, HD131488** (Moor+ 2017)

✓ Around F and G-type stars HD146897

Statistics

Moor+ 2017

Difference Between ISM and Debris Disks

	ISM	Debris Disks
Dust	Size distribution : MRN $n(a) \propto a^{-3.5}(a < 0.1 \mu\text{m})$ dust-to-gas mass ratio : 0.01	absence of small dusts (a<6μm) : blown out by the radiative pressure. dust-to-gas mass ratio : ?
Gas	H-rich gas	 Primordial origin the remnant of protoplanetary disks. → H-rich gas Secondary origin vaporization by high velocity collision of dust grains → H-poor gas

Photo-dissociation of CO

CO Chemistry in Debris Disks

•Kamp & Bertoldi 2000, Kamp & van Zedelhoff 2001

•Chemical equilibrium with respect to CO keeping [C, O]/[H] constant.

$$\Gamma_{\rm CO} n_{\rm CO}$$

 $\sim \quad kn^{\alpha} \ (\alpha \geq 2)$

formation rate

$$\rightarrow n_{\rm CO} \sim \frac{k n^{\alpha}}{\Gamma_{\rm CO}}$$

•To get a large amount of CO

✓ decreases Γ_{CO} : not effective

 \checkmark increase the number density \rightarrow enhance the formation rate

•For high density environment, even if the shielding does not work significantly, CO is reformed efficiently.

Dependence of CO Chemistry on H abundance

How does the CO chemistry depend on [C, O]/[H]?

• Can we guess the H₂ mass from the CO fraction, CO/CI?

Expected Volume Density

$$h = c_s / \Omega$$

$$n_{\rm C} = \frac{N_{\rm CI}}{\sqrt{2\pi}h} = 160 \text{ cm}^{-3} \left(\frac{N_{\rm CI}}{3 \times 10^{16} \text{ cm}^{-2}}\right) \left(\frac{\rm T}{100 \text{ K}}\right)^{-1/2} \left(\frac{R}{50 \text{ AU}}\right)^{-3/2}$$

if C elemental abundance is the same as that in the ISM ($A_{\rm C} = 1.3 \times 10^{-4}$)

For
$$\beta$$
 Pic,
 $n_{\rm H} = 10^6 \,{\rm cm}^{-3} \left(\frac{A_{\rm C}}{1.3 \times 10^{-4}}\right)^{-1} \left(\frac{N_{\rm CI}}{3 \times 10^{16} \,{\rm cm}^{-2}}\right) \left(\frac{T}{100 \,{\rm K}}\right)^{-0.5} \left(\frac{R}{50 \,{\rm AU}}\right)^{-1.5}$

For 49 Ceti,

$$n_{\rm H} = 10^7 \,{\rm cm}^{-3} \left(\frac{A_{\rm C}}{1.3 \times 10^{-4}}\right)^{-1} \left(\frac{N_{\rm CI}}{2 \times 10^{17} \,{\rm cm}^{-2}}\right) \left(\frac{T}{300 \,{\rm K}}\right)^{-0.5} \left(\frac{R}{50 \,{\rm AU}}\right)^{-1.5}$$

PDR Calculation

Meudon PDR code (Le Petit et al. 2006) developed for the ISM

Radiative Transfer

 Exact line transfer for UV photons
 Overlapping of H, H2, CO absorption lines is taken into account.

 \checkmark UV radiation is decoupled from IR radiation

Chemistry

✓ 224 species, 2980 chemical reactions

•Level populations and thermal balance

•Plane-parallel geometry

Radiation Field

Stellar radiation,
 ✓ A5V (β Pic, T_{eff} = 8250 K), A1V(49Ceti, T_{eff} = 9000 K)

•interstellar radiation standard field (Habing 1965) $\rightarrow \chi_{\rm ISRF} \sim 1$

Debris Disk in PDR

•radiation: the central star (A5V and A1V) (taken from Atlas) the interstellar standard radiation field

•Location: r = 50 AU

•Dust size distribution (mix of silicate and graphite)

$$a_{\min} = 1\mu m$$
, $a_{\max} = 10\mu m$, $n(a) \propto a^{-3.5}$
 $\sigma_{V} \sim 0.1 \sigma_{V,ISM}$
the scale height $h \sim 5$ AU: $\tau_{V} \sim 0.01$

Parameters

- $n_{\rm H}$: Hydrogen nucleus number density (fiducial value: $10^6 {\rm cm}^{-3}$)
- *n*_C: Carbon nucleus number density (fiducial value: *n*_{C0} = 10⁶ × *A*_{C,ISM})
 ✓O/C = 2.4 (fixed)
 ✓ dust to gas mass ratio = 0.01 (fixed)

Carbon Ionization Balance

The C ionization balance depends only on $n_{\rm C}$ but not on $n_{\rm H}$ (shielding by H2 and dust is not important) (Kamp & Bertoldi 2000)

$$C + h\nu \rightarrow C^+$$
, $C^+ + e \rightarrow C$

ionization recombination

$${}_{C}F_{FUV}n(CI) \sim k_{rec}n(C^{+})n(e)$$

 $\int n(e) \sim n(C^{+})$
 $\frac{n(CI)}{n_{C}} = f\left(\frac{F_{FUV}}{n_{H}}\right)$

CO Fraction @ $\tau_{\rm V} = 0.01$

$$\frac{n_{\rm C}}{n_{\rm H}} = 1.3 \times 10^{-4}$$

n(CO) strongly depends on n

$$n(\mathbf{CO}) \propto n^3 \times \chi^{-1}$$

Main Route of CO Formation

photo-dissociation rate $\Gamma_{\rm CO}n({\rm CO}) \sim kn({\rm C}^+) \times n({\rm H}_2) \times n({\rm O})$ $\implies n({\rm CO}) \propto n_{\rm C}^2 \times n_{\rm H} \times \chi^{-1}$

$(n_{\rm H}, n_{\rm C})$ -dependence of CO Column Density (A5V β Pic)

*n*_H-dependence of CO Column Density (A1V 49Ceti)

FUV Flux Dependence of CO Column Density

Analytic Formula

Compared with Observations

$$\frac{N(\text{CO})}{N_{\text{C}}} \sim 7 \times 10^{-2} \left(\frac{n_{\text{H}}}{10^{6} \text{ cm}^{-3}}\right)^{2} \left(\frac{\mathcal{A}_{\text{C}}}{1.3 \times 10^{-4}}\right) \chi^{-1}$$

• β Pic

- ✓ Higuchi+ 2017 → $\frac{N(CO)}{N(CI)}$ ~ (2 ± 0.5) × 10⁻²
 - if gas is the primordial origin, $n_{\rm H}$ should be larger than 10^{5-6} cm⁻³.
- \checkmark there are several evidence for low H₂ abundance.
 - > Lecavelier des Etangs+2001: there are no absorption H2 lines in the stellar spectrum.

$$\rightarrow N(H_2) \le 10^{18} \text{ cm}^3$$

Matra+2017 CO(3-2)/CO(2-1) line ratio depends on nH2. $\rightarrow n(H_2) < 10^3 - 10^4 \text{ cm}^{-3}$

 \checkmark It is difficult to explain the large CO/CI ratio in the primordial origin.

• 49 Ceti

- ✓ Higuchi+ 2017 → $\frac{N(CO)}{N(CI)}$ ~ 0.01 0.04
 - if gas is the primordial origin, $n_{\rm H}$ should be larger than 10^{6-7} cm⁻³.
- \checkmark So far, there is no constraint on H2
- ✓ Roberge+ 2013: a simple chemical model cannot reproduce CO, C+, OI emissions simultaneously.

consistent with the scale height

Dependence of the CO column density on the minimum dust size

The CO column density is almost independent of the minimum dust size.
 → dusts determine only A_V.

Summary

•We calculate the chemical and thermal equilibria with line and continuum radiative transfer in using the *Meudon* PDR code.

•We found that $n(CO) \propto n_C^2 \times n_H \times \chi^{-1}$

$$\frac{N(\text{CO})}{N_{\text{C}}} \sim 7 \times 10^{-2} \left(\frac{n_{\text{H}}}{10^{6} \text{ cm}^{-3}}\right)^{2} \left(\frac{\mathcal{A}_{\text{C}}}{1.3 \times 10^{-4}}\right) \chi^{-1}$$

✓ The CO fraction can be used to estimate $n_{\rm H}$ and $N_{\rm H2}$.

CO Formation in Low Density Gas

 $n_{\rm CO} = 9.6 \times 10^{-13} \left(n_{\rm C} + 17.4 n_{\rm C^+} \right) n_{\rm O} \times n_{\rm H}$